56 #pragma warning( disable : 4305 )
57 #pragma warning( disable : 4244 )
58 #pragma warning( disable : 4101 )
71 #if defined(GOOD_TRIG)
72 #define FHT_SWAP(a,b,t) {(t)=(a);(a)=(b);(b)=(t);}
75 #define TRIG_INIT(k,c,s) \
78 for (i=2 ; i<=k ; i++) \
79 {coswrk[i]=costab[i];sinwrk[i]=sintab[i];} \
84 #define TRIG_NEXT(k,c,s) \
88 for (i=0 ; !((1<<i)&t_lam) ; i++); \
94 for (j=k-i+2 ; (1<<j)&t_lam ; j++); \
96 sinwrk[i] = halsec[i] * (sinwrk[i-1] + sinwrk[j]); \
97 coswrk[i] = halsec[i] * (coswrk[i-1] + coswrk[j]); \
100 #define TRIG_RESET(k,c,s)
103 #if defined(FAST_TRIG)
106 #define TRIG_INIT(k,c,s) \
113 #define TRIG_NEXT(k,c,s) \
119 #define TRIG_RESET(k,c,s)
132 .54119610014619698439972320536638942006107206337801,
133 .50979557910415916894193980398784391368261849190893,
134 .50241928618815570551167011928012092247859337193963,
135 .50060299823519630134550410676638239611758632599591,
136 .50015063602065098821477101271097658495974913010340,
137 .50003765191554772296778139077905492847503165398345,
138 .50000941253588775676512870469186533538523133757983,
139 .50000235310628608051401267171204408939326297376426,
140 .50000058827484117879868526730916804925780637276181,
141 .50000014706860214875463798283871198206179118093251,
142 .50000003676714377807315864400643020315103490883972,
143 .50000000919178552207366560348853455333939112569380,
144 .50000000229794635411562887767906868558991922348920,
145 .50000000057448658687873302235147272458812263401372
149 .00000000000000000000000000000000000000000000000000,
150 .70710678118654752440084436210484903928483593768847,
151 .92387953251128675612818318939678828682241662586364,
152 .98078528040323044912618223613423903697393373089333,
153 .99518472667219688624483695310947992157547486872985,
154 .99879545620517239271477160475910069444320361470461,
155 .99969881869620422011576564966617219685006108125772,
156 .99992470183914454092164649119638322435060646880221,
157 .99998117528260114265699043772856771617391725094433,
158 .99999529380957617151158012570011989955298763362218,
159 .99999882345170190992902571017152601904826792288976,
160 .99999970586288221916022821773876567711626389934930,
161 .99999992646571785114473148070738785694820115568892,
162 .99999998161642929380834691540290971450507605124278,
163 .99999999540410731289097193313960614895889430318945,
164 .99999999885102682756267330779455410840053741619428
168 1.0000000000000000000000000000000000000000000000000,
169 .70710678118654752440084436210484903928483593768846,
170 .38268343236508977172845998403039886676134456248561,
171 .19509032201612826784828486847702224092769161775195,
172 .09801714032956060199419556388864184586113667316749,
173 .04906767432741801425495497694268265831474536302574,
174 .02454122852291228803173452945928292506546611923944,
175 .01227153828571992607940826195100321214037231959176,
176 .00613588464915447535964023459037258091705788631738,
177 .00306795676296597627014536549091984251894461021344,
178 .00153398018628476561230369715026407907995486457522,
179 .00076699031874270452693856835794857664314091945205,
180 .00038349518757139558907246168118138126339502603495,
181 .00019174759731070330743990956198900093346887403385,
182 .00009587379909597734587051721097647635118706561284,
183 .00004793689960306688454900399049465887274686668768
187 .00000000000000000000000000000000000000000000000000,
188 .70710678118654752440084436210484903928483593768847,
189 .92387953251128675612818318939678828682241662586364,
190 .98078528040323044912618223613423903697393373089333,
191 .99518472667219688624483695310947992157547486872985,
192 .99879545620517239271477160475910069444320361470461,
193 .99969881869620422011576564966617219685006108125772,
194 .99992470183914454092164649119638322435060646880221,
195 .99998117528260114265699043772856771617391725094433,
196 .99999529380957617151158012570011989955298763362218,
197 .99999882345170190992902571017152601904826792288976,
198 .99999970586288221916022821773876567711626389934930,
199 .99999992646571785114473148070738785694820115568892,
200 .99999998161642929380834691540290971450507605124278,
201 .99999999540410731289097193313960614895889430318945,
202 .99999999885102682756267330779455410840053741619428
206 1.0000000000000000000000000000000000000000000000000,
207 .70710678118654752440084436210484903928483593768846,
208 .38268343236508977172845998403039886676134456248561,
209 .19509032201612826784828486847702224092769161775195,
210 .09801714032956060199419556388864184586113667316749,
211 .04906767432741801425495497694268265831474536302574,
212 .02454122852291228803173452945928292506546611923944,
213 .01227153828571992607940826195100321214037231959176,
214 .00613588464915447535964023459037258091705788631738,
215 .00306795676296597627014536549091984251894461021344,
216 .00153398018628476561230369715026407907995486457522,
217 .00076699031874270452693856835794857664314091945205,
218 .00038349518757139558907246168118138126339502603495,
219 .00019174759731070330743990956198900093346887403385,
220 .00009587379909597734587051721097647635118706561284,
221 .00004793689960306688454900399049465887274686668768
229 void mayer_fht(
double *fz,
int n);
230 void mayer_fft(
int n,
double *real,
double *imag);
231 void mayer_ifft(
int n,
double *real,
double *imag);
232 void mayer_realfft(
int n,
double *real);
233 void mayer_realifft(
int n,
double *real);
An FFT superclass. Adapted from the Pd version of FFT.
Definition: fft.h:125